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ABSTRACT
Overshooting (OV) is the signature of the nonlocal nature of convection. To describe the latter, one needs five

nonlocal, coupled differential equations to describe turbulent kinetic energies (total K and in the z-direction Kz),
potential energy, convective flux, and rate of dissipation e. We show analytically that if e is assumed to be given
by the local expression, e 5 K 3/2l21 (mixing length l 5 aHp or l 5 z /a, since the region is small in extent), the
remaining differential equations exhibit singularities (divergences) for specific values of a within the range of
values usually employed. No solution can be found. Thus, OV results from such an approach are quite accidental,
as they stem from an arbitrary fine tuning of a.
Subject headings: convection — hydrodynamics — stars: evolution — stars: interiors

— Sun: evolution — turbulence

1. INTRODUCTION

Even when buoyancy forces vanish, eddies retain sufficient
residual velocities to “overshoot” into the adjacent, stably
stratified (radiative) regions. In massive stars, overshooting
(OV) is important because the intruding eddies carry material
with bigger mean molecular weight, which ultimately affects
the luminosity, since L 1 m4–m7.5. Early (Prather & De-
marque 1974) and recent (Andersen, Nordstrom, & Clauser
1990; Shaller et al. 1992; Nordstrom, Andersen, & Andersen
1997; Kozhurina-Platais et al. 1997) determinations suggest
that OV 5 0.2Hp. Stothers & Chin (1991) have suggested an
even stronger constraint, OV , 0.2Hp. In the solar case, one
deals primarily with undershooting, which is determined by
helioseismological data. Basu, Antia, & Narashima (1994)
obtained OV 5 0.1Hp, while Roxburgh & Vorontsov (1994)
obtained OV 5 0.25Hp. The most recent analysis, using better
data (with lower error) and improvements in the fitting
procedure, leads to OV 5 0.05Hp (Basu 1997).

As yet there is no reliable theoretical determination of OV.
Numerical simulations (Singh, Roxburgh, & Chan 1995) yield
OV values that are too large compared with the new data,
while available nonlocal theories (Gough 1977; Xiong 1986)
employ a “mixing length,” the implications of which are the
subject of this paper.

The problem is as follows. Given the two primary turbulent
fields ui and u, representing velocity and temperature, respec-
tively (the total velocity and temperature fields are vi 5 Ui 1 ui

and T 5 T# 1 u), one constructs five second-order moments:
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representing turbulent kinetic energy, turbulent pressure
( pt 5 2rKz), temperature variance (potential energy), convec-
tive flux (Fc 5 cpr J), and rate of energy dissipation e, respec-
tively. To describe turbulent convection, one therefore needs
five nonlocal differential equations for the variables in equa-
tion (1). These dynamic equations have now been derived
using two very different methodologies: a one-point closure
(the Reynolds stress approach; Canuto 1992) and a two-point

closure (the stochastic dynamic model; Canuto & Dubovikov
1996, 1997). The equations are the following:
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Notice that there is no mixing length of any sort. The
timescales tu and tpu will be given below. Here, c1 5 1.44,
c2 5 1.92, b5 5 1

2, t 5 2Ke21; the superadiabatic gradient is

b 5 2
­T

­ z
1 g /cp , (2f)

x is the radiative conductivity, a 5 T21 (for a perfect gas), and
Df represents the diffusion processes that make the equations
nonlocal. In the limit of stationarity and locality,

­

­t
3 0, (3a)

equations (2a)–(2e) become algebraic. The resulting convec-
tive flux reproduces the CM model (Canuto & Christensen-
Dalsgaard 1997), which is an improvement over the mixing-
length theory (MLT) (Stothers & Chin 1997). An OV region is
characterized by three features,

b , 0, J , 0, Pe , 1 , (3b)
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that is, the temperature is stably stratified, the convective flux
is negative, and convection is inefficient (Pe 5 wlx21 is the
Peclet number). If one inserts equation (3b) into equations
(2a), (2d), and (2e), one notices that each term on the
right-hand side is negative and acts like a sink. There is no
local energy source. In order to achieve stationarity, the only
sources are the diffusion terms that bring K, J, etc., from
where they are created, which is a nonlocal process. In the
low-efficiency regime, tpu and tu are much smaller than the
turbulent timescale t,

tpu

t
5 ~4p2!21 Pe,

tu

t
5 4~7p2!21 Pe . (4a)

As for the diffusion terms, we have in general
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Df(
1
2 w# 2) has the same form [see eq. (4b)], with K 3 1

2 w# 2. The
turbulent Prandtl number st 5 0.72, and
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The form of the two remaining diffusion terms depends on
whether convection is efficient or inefficient. For the latter
case, we have
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To encompass the alternative form for Df, the so-called down-
gradient approximation (DGA) (Canuto 1992, eqs. [36a]–[36c]),
we shall employ two parameters, p and q, where p 5 1

3

and q 5 1 correspond to equations (4b)–(4f), while p 5 1 and
q 5 0 correspond to the DGA. We stress that equations
(2a)–(2e) are quite general, while equations (4a), (4d), and
(4e) are valid only in the OV region of inefficient convection.

2. KEY INGREDIENT: THE DISSIPATION e

The system of equation (2a)–(2e) is closed, and its applica-
tion to any specific star ought to yield the value of the OV
distance. For a complete calculation, one may also want to
consider the extension of equations (4a), (4e), and (4f) to the
case of efficient convection, where, however, a theory is much
less important, since the temperature gradient is very close to
being adiabatic.

Suppose that we now take equation (2e) in the local limit,
­/­ z 3 l21, where l is a mixing length. Making use of equa-
tions (4c) and (4d), we obtain from equation (2e),

e 5
K 3/2

l
. (5a)

This expression has been used in the nonlocal models of
Gough (1977) and Xiong (1986). We may notice that equation
(5a) is also the expression for the turbulent kinetic energy

computed by integrating the Kolmogorov spectrum E(k) 1
e2/3k25/3 over all wavenumbers from k0 1 l21. Since l must be
prescribed from outside, we proceed as follows. We call R1, 2

the beginning and the end points of the full convective zone
(stable and unstable parts). We are interested in the behavior
of the differential equations (2a)–(2d) not only in the small
stably stratified OV region, but more particularly in the even
smaller region near the end point R2, where we have to satisfy
boundary conditions of the form

J~a, R2! 5 e~a, R2! 5 0 , (5b)

and so forth, for arbitrary a.
Near R2, it is legitimate to expand l in a Taylor expansion in

the variable R2 2 r and retain the first term of the series. We
thus write, in general,

l 5
h

a
, h 5 Min @ur 2 R1u, ur 2 R2u# . (5c)

In the undershooting region, h 5 r 2 R1, h9 . 0; in the
overshooting region, h 5 R2 2 r, h9 , 0. The factor a cannot
be determined a priori, but its value is expected to be near
unity.

We shall now show that there exist three values of a, called
a*, for which equations (2a)–(2d) exhibit singularities; namely,
near the point R2, rather than equation (5b) we have

J~a*, r!, e~a*, r! 3 E , (5d)

and thus the system of equations (2a)–(2d) has no solutions.
We consider equation (2c). Since in the OV region convection
is inefficient, and thus x . xt, we can write
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Subtracting equation (2d) from equation (2a) and multiplying
by 1
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Since the left-hand side is close to zero, we use equation (6b)
to eliminate w# 2. Equation (6a) then becomes
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At the same time, equation (2a) becomes, again using equa-
tion (5a),
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where
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Since OV takes place in a region much smaller than the extent
R2, we can neglect the terms l /r 1 h /r in the above expres-
sions. Furthermore
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1

a
. (7a)

In the vicinity of R2, we write

J 5 2C1hn, e 5 C2hm . (7b)

Physical solutions are those that correspond to C1, 2 . 0. We
substitute equation (7b) in equations 6(c) and 6(d) in the
stationary regime. Neglecting terms of order h /r ,, 1, we
obtain the solution

J 5 2C1h8, e 5 C2h8 , (8a)
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Since C1, 2 must be positive, we conclude that

Q1 . 1, Q2 , 1 . (9a)

The values p 5 1
3 and q 5 1 corresponding to equations

(4b)–(4e), imply that

0.84 , a , 1.67 . (9b)

The values p 5 1, q 5 0, corresponding to the down gradient,
imply that

0.84 , a , 2.61 . (9c)

At the points

a* 5 0.84, a* 5 1.67, a* 5 2.61 , (9d)

the functions J and e diverge; yet these values are well within
the realm of possible candidates for a. For example, the value
(with x being the degree of anisotropy of the eddies)

a 5 ~1 1 x!1/2/2 5 31/2/2 5 0.866 (9e)

is often used, and yet it differs by less than 3% from the
singularity a* 5 0.84. This fact has been confirmed numeri-
cally (H. M. Antia 1997, private communication).

3. CONCLUSIONS

We have shown that a local expression for e, even when the
other turbulent variables are treated nonlocally, may lead to
divergences, unless one fine-tunes the coefficient a. Two
nonlocal models (Gough 1977; Xiong 1986; Balmforth 1992)
have employed the local expression of equation (5a). The
question then arises as to the reliability of results based on
fine-tuning a when values different by a few percent would
allow no solutions to be found, since the equations diverge.
The only procedure which is free of these divergences requires
that all five variables of equation (1) be described by the full
set of nonlocal equations (2a)–(2e). The system of equations is
at present being solved for the solar convective zone (Antia et
al. 1997).

V. M. C. thanks H. M. Antia, S. Basu, and R. Stothers for
discussions of the OV problem.
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